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Why learn from noisy data?

® Data acquisition devices or sensors introduce noise

Local differential privacy

e Communication constrains and quantization error

Adversarial attacks
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Problem Statement (Learning Hidden Tree Structures)

Observe noisy values for each node of the unknown tree structure
® X1,Xs,...,X, are hidden variables (black nodes)
® Y1,Ys,...,Y), are observable variables (red nodes)
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Learning a tree structure

Assumptions:

® Distribution of X is nondegenerate and factorizes according to a
tree T.

e T = (V&) is connected.
* [(X;;X;)>0foralli,jeV.
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Chow-Liu Algorithm

Given: Dataset D =Y € YlVIxn

@ Compute empirical distribution on each edge:

1 n
pij(l,m) = —Z {Yi =LY, x=m} Vi,j €V
k=1

3

® Find plug-in estimate of mutual information:

i (6, m)
Y;,Y i(¢,m)lo %

© Output TCL = MST ({I(Zl, Z) i e V})
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Main questions

Chow-Liu [— TTCL

Given noise corrupted data:
® |s Chow-Liu consistent?

® How does noise affect the sample complexity?

Prior work: Finite sample complexity for Ising and Gaussian Models.
® Tan et al. (2011), Liu et al. (2011), Bresler & Karzand (2018)
¢ Hidden models: Our work (2019), Goel-Kane-Klivans (2019)

N\
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A motivating example: 3-node hidden model

What can go wrong when we have noise?
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A motivating example: 3-node hidden model

What can go wrong when we have noise?

The MRF of the observable is a complete graph!

0 weak @strong 0 @
= o
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A motivating example: 3-node hidden model

What can go wrong when we have noise?

The MRF of the observable is a complete graph!

0 weak /X>strong 0 @
= o

Questions:

® |s Chow-Liu consistent? NO
TCL

® When does lim,, — T w.p. 17 A sufficient condition
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A motivating example: 3-node hidden model

What can go wrong when we have noise?

The MRF of the observable is a complete graph!

0 weak @strong 0 @
= o

Questions:

® |s Chow-Liu consistent? NO
TCL

® When does lim,, — T w.p. 17 A sufficient condition

® Can we tweak Chow-Liu to fix it? Sometimes
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A closer look at the example

X1, X9, X3 € {—1,+1}, 0< |E[X1X2]| < |E[X2X3]| <1

strong

weak

weak strong
1 6(2\ X3

BSC(q")
BSC(q)
BSC(q)

DPI
I(X9; X3) > I(X1; X2) > I(X1;X3)

lim [(X;; X;) = I(X;; X;) and lim Eper — {(1,2),(2,3)} = &7
n—oo n—oo
® Does a similar condition hold for the observables?

® Could we have lim,_,oc Epct # E7?
\ / T
'
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Feasibility Threshold

weak rX\strong T
2 3

1

BSC(¢)
BSC(q)
BSC(q)

° If I(Y1;Y2) > I(Y1;Y3) > I(Y2;Y3)

I(Y1;Y3) > 1(Y2;Y3) <= [EMY3]| > [E[Y2Y3]| <=

1-2
EXXG) > {55 0.4 €0,1/2).

Nikolakakis et al.
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Unprocessed vs Processed Data

What if [E[X; Xo]| > (1 — 2¢)/(1 — 2¢')?

® We have to pre-process

Z1E2Y1/(1-2d), Z22Ya/(1-2q), Z32Y3/(1—29)

Correct order, I(ZQ; Z3) > I(Zl; ZQ) > I(Zl; Z3)
Then lim,, s 8T§LZL = &7 with probability 1.
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Unprocessed vs Processed Data

== Unprocessed Data
= Processed Data

Probability of failure §

x10*

Figure: Synthetic data, ¢ = 0.2, ¢ = 0.25
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(The set EV?) Let e = (w,w) € Er be an edge and u, % € Vr be a
pair of nodes such that e € pathy (u, @) and |pathp (u, @) | > 2. Then

EV2 4 {(w,w),u,u € Er X V7 X Vp :
(w,w) € pathy(u,w) and |pathy (u, )| > 2}.

° P °
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(The set £V?) Let e = (w,w) € Er be an edge and u, % € Vr be a
pair of nodes such that e € pathy (u,w) and |pathy (u, )| > 2. Then

EV? & {(w,@),u, @ € Er X V1 X V1 :
(w,w) € pathy(u, ) and |pathy (u,a)| > 2}.

u w w u

o o—0 o
Error Characterization of CL algorithm (Bresler & Karzand 2018):

N

If T £ T = I((w, @), u,0) € EV?: 1 (Yu; Yo) < T (Ya; Ya)

i Rutgers Nikolakakis et al.
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Sufficient Condition for Exact Recovery

Exact recovery:

IfV (w, @), u, 1) € EV? 1 T (Yo Vo) > T (Vi3 Va) = T =T

I (Y3 Vi) > 1 (Y3 Va) <=
I (Yu;Ye) =1 (Yu; Ya) >
1 (Vs Ya) = 1 (Vs Ya) | = [ (Y Ya) = T (Va3 Vi) |

Rutgers Nikolakakis et al.
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Sufficient Condition for Exact Recovery

Exact recovery:

Y ((w, @), u,@) € EVE: T (V; Vi) > 1 (Vy; Vy) <= T?L —T

I(Y;Ya) > 1 (Y Ve) <=
I (Yw§ YITJ) - I(Yu§Yﬂ) >
(Vs Ya) = 1 (Vas Ya) | = |1 (Y Yo) = I (Yai Ya)|
Sufficient Condition

) 1
If ‘I(Yg;yg) —I(Ygg;YZ)’ <= min_ {I(Ye;Ya) —I(YeYa)}
2 (e,u,u)eEV?

for all £,¢' € V then T{" = T.
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(Information Thresholds I°, If)

1
Ioé_ 9 I X’w;X— = J/ Xu,Xﬁ
2 ((wvw)liqu%esw 1 ( ) ( )]
1
T2 ((w@){%}%esw L ) —I( ]

e Always I° > 0, DPI
* I? < 0 generalizes the condition 11 s S [E[X1.X5]| to
non parametrlc models and general channels

°*I7 <0 implies that structure learning is infeasible without

post-processing
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Sample Complexity

¢ Sufficient condition ’f(Yg;Yg) - I(Yg;Yg)‘ <I{
® Concentration of measure of mutual information estimates
e Union bound over the pairs £,/ € V

Fix 6 € (0,1). There exist constants C > 0 and c € (1, 2] independent
of  such that, if I? > 0 and

72log (2 -
o> 8 (5) S and 19> Cn's,
logyn (I? _ Cnf“)

then CL with input D = Y™ returns TTCL =T w.p. at least 1 —§.

Almost logarithmic order: O(log1+c(p/6)), forall ( >0
'
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Experiments: Noiseless Binary Data
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Figure: Left: P (TCL #T) vs I°, Right: log P (TCL #T) vs (I°)?
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Experiments: Noisy Binary Data

Rutgers

Probability of failure §
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Noisy Information Threshold I;’

Figure: P <T$L # T) vs IY
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Further Questions and Future Directions

What is the relationship of I° and I?? Connection with SDPI
® How to estimate I from training data?

® How to preserve privacy while structure learning remains feasible?

Find robust methods for pre-processing against adversarial attacks

N\
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Thank youl!
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