Non-Parametric Structure Learning on Hidden Tree-Shaped Distributions

¹Konstantinos E. Nikolakakis, ²Dionysios S. Kalogerias, ¹Anand D. Sarwate

 $^1{\mbox{Department}}$ of Electrical & Computer Engineering, Rutgers University $^2{\mbox{Department}}$ of Electrical & Systems Engineering, University of Pennsylvania

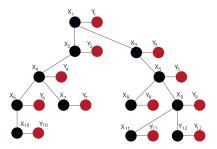
Why learn from noisy data?

- Data acquisition devices or sensors introduce noise
- Local differential privacy
- Communication constrains and quantization error
- Adversarial attacks

Problem Statement (Learning Hidden Tree Structures)

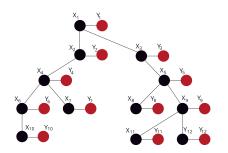
Observe noisy values for each node of the unknown tree structure

- X_1, X_2, \dots, X_p are hidden variables (black nodes)
- Y_1, Y_2, \dots, Y_p are observable variables (red nodes)



Rutgers Nikolakakis et al

Learning a tree structure



Assumptions:

- ullet Distribution of ${f X}$ is nondegenerate and factorizes according to a tree ${f T}.$
- $T = (\mathcal{V}, \mathcal{E})$ is connected.
- $I(X_i; X_j) > 0$ for all $i, j \in \mathcal{V}$.

Rutgers Nikolakakis et al

Chow-Liu Algorithm

Given: Data set $\mathcal{D} = \mathbf{Y} \in \mathcal{Y}^{|\mathcal{V}| \times n}$

1 Compute empirical distribution on each edge:

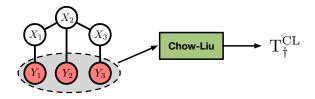
$$\hat{\mathbf{p}}_{i,j}(\ell,m) = \frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{\{Y_{i,k}=\ell,Y_{j,k}=m\}} \quad \forall i, j \in \mathcal{V}$$

② Find plug-in estimate of mutual information:

$$\hat{I}(Y_i; Y_j) = \sum_{\ell, m} \hat{p}_{i, j}(\ell, m) \log_2 \frac{\hat{p}_{i, j}(\ell, m)}{\hat{p}_i(\ell) \hat{p}_j(m)}$$

 $\textbf{ 3} \text{ Output } \mathrm{T}^{\mathrm{CL}}_{\dagger} = \mathsf{MST}\left(\{\hat{I}(Z_i;Z_j): i,j \in \mathcal{V}\}\right)$

Main questions



Given noise corrupted data:

- Is Chow-Liu consistent?
- How does noise affect the sample complexity?

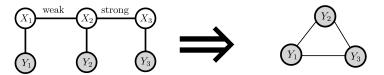
Prior work: Finite sample complexity for Ising and Gaussian Models.

- Tan et al. (2011), Liu et al. (2011), Bresler & Karzand (2018)
- Hidden models: Our work (2019), Goel-Kane-Klivans (2019)

What can go wrong when we have noise?

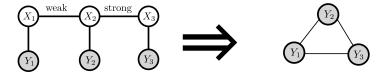
What can go wrong when we have noise?

The MRF of the observable is a complete graph!



What can go wrong when we have noise?

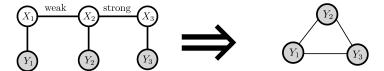
The MRF of the observable is a complete graph!



Questions:

What can go wrong when we have noise?

The MRF of the observable is a complete graph!

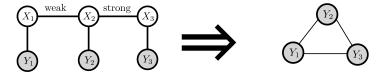


Questions:

Is Chow-Liu consistent? NO

What can go wrong when we have noise?

The MRF of the observable is a complete graph!

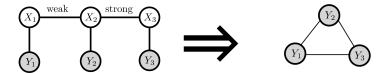


Questions:

- Is Chow-Liu consistent? NO
- When does $\lim_{n\to\infty} \mathrm{T^{CL}} \to \mathrm{T}$ w.p. 1? A sufficient condition

What can go wrong when we have noise?

The MRF of the observable is a complete graph!

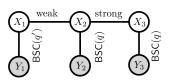


Questions:

- Is Chow-Liu consistent? NO
- When does $\lim_{n\to\infty} T^{CL} \to T$ w.p. 1? A sufficient condition
- Can we tweak Chow-Liu to fix it? Sometimes

A closer look at the example

$$X_1, X_2, X_3 \in \{-1, +1\}, \quad 0 < \underbrace{|\mathbb{E}[X_1 X_2]|}_{\text{weak}} \leq \underbrace{|\mathbb{E}[X_2 X_3]|}_{\text{strong}} < 1$$



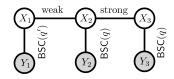
$$I(X_2; X_3) > I(X_1; X_2) \stackrel{\mathsf{DPI}}{>} I(X_1; X_3)$$

$$\lim_{n\to\infty} \hat{I}(X_i;X_j) \to I(X_i;X_j) \text{ and } \lim_{n\to\infty} \mathcal{E}_{\mathbf{T}^{\mathrm{CL}}} \to \{(1,2),(2,3)\} \equiv \mathcal{E}_{\mathbf{T}}$$

- Does a similar condition hold for the observables?
- Could we have $\lim_{n \to \infty} \mathcal{E}_{T_{\star}^{\mathsf{CL}}} \neq \mathcal{E}_{T}$?

Nikolakakis et a

Feasibility Threshold



- If $I(Y_1; Y_2) > I(Y_1; Y_3) > I(Y_2; Y_3)$
- ullet then $\lim_{n o\infty}\mathcal{E}_{\mathrm{T}^{\mathsf{CL}}}
 eq \mathcal{E}_{\mathrm{T}}$

$$I(Y_1; Y_3) > I(Y_2; Y_3) \iff |\mathbb{E}[Y_1 Y_3]| > |\mathbb{E}[Y_2 Y_3]| \iff |\mathbb{E}[X_1 X_2]| > \frac{1 - 2q}{1 - 2q'}, \quad q, q' \in [0, 1/2).$$

Rutgers Nikolakakis et al

Unprocessed vs Processed Data

- What if $|\mathbb{E}[X_1X_2]| > (1-2q)/(1-2q')$?
- We have to pre-process

$$Z_1 \triangleq Y_1/(1-2q'), \ Z_2 \triangleq Y_2/(1-2q), \ Z_3 \triangleq Y_3/(1-2q)$$

- Correct order, $I(Z_2; Z_3) > I(Z_1; Z_2) > I(Z_1; Z_3)$
- Then $\lim_{n o \infty} \mathcal{E}_{\mathrm{T}_{\dagger}^{\mathsf{CL}}} = \mathcal{E}_{\mathrm{T}}$ with probability 1.

Unprocessed vs Processed Data

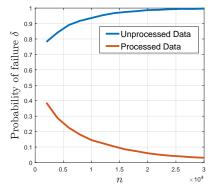


Figure: Synthetic data, q' = 0.2, q = 0.25

Definition

(The set \mathcal{EV}^2) Let $e \equiv (w, \bar{w}) \in \mathcal{E}_T$ be an edge and $u, \bar{u} \in \mathcal{V}_T$ be a pair of nodes such that $e \in \operatorname{path}_{T}(u, \bar{u})$ and $\left|\operatorname{path}_{T}(u, \bar{u})\right| \geq 2$. Then

$$\mathcal{EV}^{2} \triangleq \{(w, \bar{w}), u, \bar{u} \in \mathcal{E}_{T} \times \mathcal{V}_{T} \times \mathcal{V}_{T} : \\ (w, \bar{w}) \in \operatorname{path}_{T}(u, \bar{u}) \text{ and } |\operatorname{path}_{T}(u, \bar{u})| \geq 2\}.$$

Definition

(The set \mathcal{EV}^2) Let $e \equiv (w, \bar{w}) \in \mathcal{E}_T$ be an edge and $u, \bar{u} \in \mathcal{V}_T$ be a pair of nodes such that $e \in \operatorname{path}_T(u, \bar{u})$ and $\operatorname{path}_T(u, \bar{u}) \mid \geq 2$. Then

$$\begin{split} \mathcal{E}\mathcal{V}^2 &\triangleq \{(w,\bar{w}), u, \bar{u} \in \mathcal{E}_{\mathrm{T}} \times \mathcal{V}_{\mathrm{T}} \times \mathcal{V}_{\mathrm{T}} : \\ &(w,\bar{w}) \in \mathrm{path}_{\mathrm{T}}(u,\bar{u}) \text{ and } |\mathrm{path}_{\mathrm{T}}(u,\bar{u})| \geq 2\}. \end{split}$$

Error Characterization of CL algorithm (Bresler & Karzand 2018):

$$\text{If } \mathbf{T}_{\dagger}^{\mathrm{CL}} \neq T \implies \exists \left((w, \bar{w}), u, \bar{u} \right) \in \mathcal{EV}^2 : \hat{I}\left(Y_w; Y_{\bar{w}} \right) \leq \hat{I}\left(Y_u; Y_{\bar{u}} \right)$$

13 / 19

Sufficient Condition for Exact Recovery

Exact recovery:

If
$$\forall ((w, \bar{w}), u, \bar{u}) \in \mathcal{EV}^2 : \hat{I}(Y_w; Y_{\bar{w}}) > \hat{I}(Y_u; Y_{\bar{u}}) \implies T_{\dagger}^{CL} = T$$

$$\begin{split} \hat{I}\left(Y_{w};Y_{\bar{w}}\right) &> \hat{I}\left(Y_{u};Y_{\bar{u}}\right) \iff \\ I\left(Y_{w};Y_{\bar{w}}\right) - I\left(Y_{u};Y_{\bar{u}}\right) &> \\ \left[\hat{I}\left(Y_{u};Y_{\bar{u}}\right) - I\left(Y_{u};Y_{\bar{u}}\right)\right] - \left[\hat{I}\left(Y_{w};Y_{\bar{w}}\right) - I\left(Y_{w};Y_{\bar{w}}\right)\right]. \end{split}$$

Rutgers Nikolakakis et a

13 / 19

Sufficient Condition for Exact Recovery

Exact recovery:

$$\forall ((w, \bar{w}), u, \bar{u}) \in \mathcal{EV}^2 : \hat{I}(Y_w; Y_{\bar{w}}) > \hat{I}(Y_u; Y_{\bar{u}}) \iff T^{\text{CL}}_{\dagger} = T$$

$$\begin{split} \hat{I}\left(Y_{w};Y_{\bar{w}}\right) &> \hat{I}\left(Y_{u};Y_{\bar{u}}\right) \iff \\ I\left(Y_{w};Y_{\bar{w}}\right) - I\left(Y_{u};Y_{\bar{u}}\right) > \\ \left[\hat{I}\left(Y_{u};Y_{\bar{u}}\right) - I\left(Y_{u};Y_{\bar{u}}\right)\right] - \left[\hat{I}\left(Y_{w};Y_{\bar{w}}\right) - I\left(Y_{w};Y_{\bar{w}}\right)\right]. \end{split}$$

Sufficient Condition

$$\begin{split} & \text{If } \left| \hat{I}\left(Y_{\ell}; Y_{\bar{\ell}}\right) - I\left(Y_{\ell}; Y_{\bar{\ell}}\right) \right| < \frac{1}{2} \min_{(e, u, \bar{u}) \in \mathcal{EV}^2} \left\{ I\left(Y_w; Y_{\bar{w}}\right) - I\left(Y_u; Y_{\bar{u}}\right) \right\} \\ & \text{for all } \ell, \ell' \in \mathcal{V} \text{ then } \mathbf{T}^{\mathrm{CL}}_{+} = \mathbf{T}. \end{split}$$

III

Rutgers Nikolakakis et a

Definition

(Information Thresholds \mathbf{I}^o , \mathbf{I}^o_\dagger)

$$\mathbf{I}^{o} \triangleq \frac{1}{2} \min_{((w,\bar{w}),u,\bar{u}) \in \mathcal{EV}^{2}} \left[I\left(X_{w}; X_{\bar{w}}\right) - I\left(X_{u}; X_{\bar{u}}\right) \right]$$

$$\mathbf{I}^{o}_{\dagger} \triangleq \frac{1}{2} \min_{((w,\bar{w}),u,\bar{u}) \in \mathcal{EV}^{2}} \left[I\left(Y_{w}; Y_{\bar{w}}\right) - I\left(Y_{u}; Y_{\bar{u}}\right) \right]$$

- Always $\mathbf{I}^o \geq 0$, DPI
- $\mathbf{I}_{\dagger}^{o} \leq 0$ generalizes the condition $\frac{1-2q}{1-2q'} \leq |\mathbb{E}[X_{1}X_{2}]|$ to non-parametric models and general channels
- ${f I}^o_{\dagger} < 0$ implies that structure learning is infeasible without post-processing

Sample Complexity

- Sufficient condition $\left|\hat{I}\left(Y_{\ell};Y_{ar{\ell}}\right)-I\left(Y_{\ell};Y_{ar{\ell}}\right)\right|<\mathbf{I}_{\dagger}^{o}$
- Concentration of measure of mutual information estimates
- Union bound over the pairs $\ell,\ell'\in\mathcal{V}$

Theorem

Fix $\delta\in(0,1)$. There exist constants C>0 and $c\in(1,2]$ independent of δ such that, if $\mathbf{I}_\dagger^o>0$ and

$$\frac{n}{\log_2^2 n} \geq \frac{72 \log \left(\frac{p}{\delta}\right)}{\left(\mathbf{I}^o_\dagger - C n^{\frac{1-c}{c}}\right)^2} \quad \text{and} \quad \mathbf{I}^o_\dagger > C n^{\frac{1-c}{c}},$$

then CL with input $\mathcal{D} = \mathbf{Y}^{1:n}$ returns $T_{\dagger}^{CL} = T$ w.p. at least $1 - \delta$.

1766

Almost logarithmic order: $\mathcal{O}(\log^{1+\zeta}(p/\delta))$, for all $\zeta > 0$

Experiments: Noiseless Binary Data

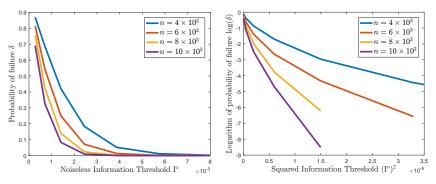


Figure: Left: $\hat{\mathbb{P}}\left(T^{CL} \neq T\right)$ vs \mathbf{I}^{o} , Right: $\log \hat{\mathbb{P}}\left(T^{CL} \neq T\right)$ vs $(\mathbf{I}^{o})^{2}$

Experiments: Noisy Binary Data (BSC)

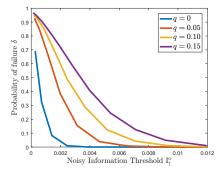


Figure:
$$\hat{\mathbb{P}}\left(\mathrm{T}^{\mathrm{CL}}_{\dagger} \neq \mathrm{T}\right)$$
 vs \mathbf{I}^{o}_{\dagger}

Further Questions and Future Directions

- What is the relationship of ${f I}^o$ and ${f I}^o_\dagger$? Connection with SDPI
- How to estimate I^o from training data?
- How to preserve privacy while structure learning remains feasible?
- Find robust methods for pre-processing against adversarial attacks

Thank you!