

Black-Box Generalization: Stability of Zeroth-Order Learning

Konstantinos Nikolakakis, Farzin Haddadpour, Dionysios Kalogerias, Amin Karbasi

Yale University

Motivation — Applications

- The loss function is unknown, but a limited amount of functions evaluations is available
- Optimization error: Stochastic differences of function evaluations provide optimal approximations of the gradient (Duchi et al.)
- Black-box adversarial attacks, federated learning, reinforcement learning, what about generalization?

Assumptions

• The loss function is L-Lipschitz

$$||f(w,z) - f(u,z)||_2 \le L||w - u||_2, \quad \forall z \in \mathcal{Z}.$$

• The gradient of the loss function is β -Lipschitz

$$\|\nabla_w f(w,z) - \nabla_u f(u,z)\|_2 \le \beta \|w - u\|_2, \quad \forall z \in \mathcal{Z}.$$

Lemma (Growth Recursion: ZoSS)

Consider the sequences of updates $\{\tilde{G}_t\}_{t=1}^T$, $\{\tilde{G}_t'\}_{t=1}^T$, define $\Delta \tilde{G}_t \triangleq \mathbb{E}[\|\tilde{G}_t(w_t) - \tilde{G}_t'(w_t')\|]$ and $\Gamma_K^d \triangleq \sqrt{(3d-1)/K} + 1$. Let $w_0 = w_0'$ be the starting point, $w_{t+1} = \tilde{G}_t(w_t)$ and $w_{t+1}' = \tilde{G}_t'(w_t')$ for any $t \in \{1, \ldots, T\}$. Then for any $w_t, w_t' \in \mathbb{R}^d$

$$\Delta \tilde{G}_t \leq \begin{cases} \left(1 + \alpha_t \beta \Gamma_K^d\right) \|w_t - w_t'\| + \mu \beta \alpha_t (3+d)^{3/2}, \ \tilde{G}_t(\cdot) = \tilde{G}_t'(\cdot), \\ \|w_t - w_t'\| + 2\alpha_t L \Gamma_K^d + \mu \beta \alpha_t (3+d)^{3/2}, \ \tilde{G}_t(\cdot) \neq \tilde{G}_t'(\cdot). \end{cases}$$

Lemma (Growth Recursion: Mini-Batch ZoSS)

Consider the sequences of updates $\{\tilde{G}_{J_t}\}_{t=1}^T$ and $\{\tilde{G}'_{J_t}\}_{t=1}^T$, define $\Delta \tilde{G}_{J_t} \triangleq \mathbb{E}[\|\tilde{G}_{J_t}(w_t) - \tilde{G}'_{J_t}(w_t')\|]$ and $\mu \leq cL\Gamma_K^d/(n\beta(3+d)^{3/2})$. Let $w_0 = w_0'$ be the starting point, $w_{t+1} = \tilde{G}_{J_t}(w_t)$ and $w_{t+1}' = \tilde{G}'_{J_t}(w_t')$ for any $t \in \{1, \ldots, T\}$. Then for any $w_t, w_t' \in \mathbb{R}^d$ and $t \geq 0$

$$\Delta \tilde{G}_{J_t} \leq \begin{cases} \left(1 + \beta \alpha_t \Gamma_K^d\right) \|w_t - w_t'\| + \frac{cL\alpha_t}{n} \Gamma_K^d, & \tilde{G}_{J_t}(\cdot) = \tilde{G}_{J_t}'(\cdot) \\ \left(1 + \frac{m-1}{m} \beta \alpha_t \Gamma_K^d\right) \|w_t - w_t'\| + \left(\frac{2L\alpha_t}{m} + \frac{cL\alpha_t}{n}\right) \Gamma_K^d, & \tilde{G}_{J_t}(\cdot) \neq \tilde{G}_{J_t}'(\cdot). \end{cases}$$

Lemma (ZoSS Stability — Nonconvex Loss)

Consider the ZoSS algorithm with final-iterate estimates A(S) and A(S'), corresponding to the data-sets S, S', respectively (that differ in exactly one entry). Then the discrepancy $\delta_T \triangleq \|A(S) - A(S')\|$, under the event $\mathcal{E}_{\delta_{to}}$, satisfies the inequality

$$\mathbb{E}[\delta_T | \mathcal{E}_{\delta_{t_0}}] \leq \left(\frac{2L}{n} \Gamma_K^d + \mu \beta (3+d)^{3/2}\right) \sum_{t=t_0+1}^T \alpha_t \prod_{i=t+1}^T \left(1 + \beta \alpha_i \Gamma_K^d\right).$$

Problem Statement

- Let f(w,z) be the loss at $w \in \mathbb{R}^d$ for some example $z \in \mathcal{Z}$.
- Given a dataset $S \triangleq \{z_i\}_{i=1}^n$ of i.i.d $z_i \sim \mathcal{D}$
- Find the parameters w^* such that $w^* \in \arg\min_w R(w)$, where $R(w) \triangleq \mathbb{E}_{Z \sim \mathcal{D}}[f(w, Z)]$ Since \mathcal{D} is not known, we consider the empirical risk

$$R_S(w) \triangleq \frac{1}{n} \sum_{i=1}^n f(w; z_i)$$

and the corresponding empirical risk minimization (ERM) problem

- Find $W_S^* \in \arg\min_w R_S(w)$
- $\epsilon_{\text{gen}} \triangleq \mathbb{E}[R(A(S)) R_S(A(S))]$ (Generalization Error)
- $\epsilon_{\text{excess}} \triangleq \mathbb{E}_{S,A}[R(A(S))] R(w^*) = \underbrace{\mathbb{E}_{S,A}[R(A(S)) R_S(A(S))]}_{S,A} + \underbrace{\mathbb{E}_{S,A}[R_S(A(S))] R(w^*)}_{S,A}.$

For i.i.d. $S, S' \in \mathcal{Z}^n$ that differ in one entry, $\sup_z \mathbb{E}_A[f(A(S), z) - f(A(S'), z)] \le \epsilon_{\text{stab}}$, for some $\epsilon_{\text{stab}} > 0$, then $\epsilon_{\text{gen}} \le \epsilon_{\text{stab}}$ and $\epsilon_{\text{stab}} \le L \sup_{S,S'} \mathbb{E}_A ||A(S) - A(S')||$.

Zeroth-Order Stochastic Search (ZoSS)

As a *gradient-free* alternative of the classical SGD algorithm, we consider the ZoSS scheme, with (single-example update) update rule

$$\Delta f_{w,z_{i_t}}^{K,\mu} \equiv \Delta f_{w,z_{i_t}}^{K,\mu,\mathbf{U}^t} \triangleq \frac{1}{K} \sum_{k=1}^{K} \frac{f(w + \mu U_k^t, z_{i_t}) - f(w, z_{i_t})}{\mu} U_k^t,$$

$$W_{t+1} = W_t - \alpha_t \Delta f_{W_t,z_{i_t}}^{K,\mu}, \quad U_k^t \sim \mathcal{N}(0, I_d), \quad \mu \in \mathbb{R}^+,$$

where $\alpha_t \ge 0$ is the learning rate. At every iteration t, ZoSS generates K i.i.d. standard normal random vectors $U_k^t, k = 1, \ldots, K$, and obtains K+1 loss evaluations on perturbed model inputs.

Error Decomposition

The stability error of ZoSS at time t breaks down into the stability error of SGD and an approximation error due to missing gradient information. Let $G_t(\cdot)$ and $G'_t(\cdot)$ be SGD iterations

$$G_t(w) \triangleq w - \alpha_t \nabla f(w, z_{i_t}), \quad G'_t(w) \triangleq w - \alpha_t \nabla f(w, z'_{i_t})$$

under inputs S, S' respectively, and let $i_t \in \{1, 2, ..., n\}$ be a random index chosen uniformly and independently by the random selection rule of the algorithm, for all $t \leq T$. Similarly we use the notation $\tilde{G}(\cdot)$ and $\tilde{G}'(\cdot)$ to denote the iteration mappings of ZoSS, i.e.,

$$\tilde{G}_t(w) \triangleq w - \alpha_t \Delta f_{w,z_{i_t}}, \quad \tilde{G}'_t(w) \triangleq w - \alpha_t \Delta f_{w,z'_{i_t}}.$$

Then the iterate stability error $\tilde{G}_t(w) - \tilde{G}_t'(w')$ of ZoSS, for any $w, w' \in \mathbb{R}^d$ and for all at $t \leq T$, may be decomposed as

$$\tilde{G}_t(w) - \tilde{G}_t'(w') \propto \underbrace{G_t(w) - G_t'(w')}_{\epsilon_{\mathsf{GBstab}}} + \underbrace{\left[\nabla f(w, z_{i_t}) - \Delta f_{w, z_{i_t}}\right] + \left[\nabla f(w', z'_{i_t}) - \Delta f_{w', z'_{i_t}}\right]}_{\epsilon_{\mathsf{ost}}},$$

where ϵ_{GBstab} denotes the gradient-based stability error (associated with SGD), and ϵ_{est} denotes the gradient approximation error.

Growth Recursion — Sketch of the Proof

Define $\mathbf{V} \triangleq \nabla f(w_t, z_{i_t}) - \nabla f(w_t', z_{i_t})$. We apply Taylor's expansion to find that for any $w_t, w_t' \in \mathbb{R}^d$ it is true that

$$\widetilde{G}_t(w_t) - \widetilde{G}'_t(w'_t) = \widetilde{G}_t(w_t) - \widetilde{G}_t(w'_t)
= \underbrace{w_t - \alpha_t \nabla f(w_t, z_{i_t})}_{G(w_t)} - \underbrace{(w'_t - \alpha_t \nabla f(w'_t, z_{i_t}))}_{G'(w'_t) \equiv G(w'_t)}$$

$$-\alpha_t \left(\frac{1}{K} \sum_{k=1}^K \langle \mathbf{V}, U_k^t \rangle U_k^t - \mathbf{V} \right)$$

$$-\frac{\alpha_t}{K} \sum_{k=1}^K \left(\frac{\mu}{2} (U_k^t)^\mathsf{T} \left(\nabla^2 f(W_{k,t}^*, z_{i_t}) - \nabla^2 f(W_{k,t}^\dagger, z_{i_t}) \right) U_k^t \right) U_k^t$$

Lemma (Variance Reduction)

Let $\mathbf{U}_k \in \mathbb{R}^d, k \in \{1, 2 \dots, K\}$ be i.i.d standard Gaussian. Then for all $\mathbf{V} \in \mathbb{R}^d$ independent of all \mathbf{U}_k

$$\mathbb{E}\left[\left\|\frac{1}{K}\sum_{k=1}^{K}\langle\mathbf{V},\mathbf{U}_{k}\rangle\mathbf{U}_{k}-\mathbf{V}\right\|\left|\mathbf{V}\right]\right] \leq \sqrt{\frac{3d-1}{K}}\|\mathbf{V}\|.$$

Theorem (Nonconvex Bounded Loss)

Consider the ZoSS algorithm with T total number of iterates, stepsize $\alpha_t \leq C/t\Gamma_K^d$ (C>0), and fixed $\mu \leq cL\Gamma_K^d/n\beta(3+d)^{3/2}$ for some c>0. Then

$$|\epsilon_{\text{gen}}| \le \frac{\left(1 + (C\beta)^{-1}\right)\left((2+c)CL^2\right)^{\frac{1}{C\beta+1}}}{m} (eT)^{\frac{C\beta}{C\beta+1}}.$$

Summary of the Results

Generalization Error Bounds: ZoSS vs SGD				
Algorithm	Bound	NC	UB	MB
ZoSS (this work) $\alpha_t \leq C/(t\Gamma_K^d)$	$\frac{1 + (C\beta)^{-1}}{n} ((2+c)CL^2)^{\frac{1}{C\beta+1}} (eT)^{\frac{C\beta}{C\beta+1}}$	1	×	X
SGD, $\alpha_t \leq C/t$ Hardt et al. [1]	$\frac{1+(C\beta)^{-1}}{n} \left(2CL^2\right)^{\frac{1}{C\beta+1}} (eT)^{\frac{C\beta}{C\beta+1}}$	1	×	×
ZoSS (this work) $\alpha_t \leq C/t$	$\frac{3e(1+(C\beta)^{-1})^2}{2n}(1+(2+c)CL^2)T$ (independent of both d and K)	✓	×	X
$\alpha_t \leq \frac{\log\left(1 + \frac{C\beta}{\Gamma_K^d}(\Gamma_K^d - 1)\right)}{T\beta\sqrt{(3d-1)/K}}$	$\frac{(2+c)CL^2}{n}$	×	✓	1
SGD, $\alpha_t \leq C/T$ Hardt et al. [1]	$\frac{2CL^2}{n}$	×	1	1
ZoSS (this work) $\alpha_t \leq C/(T\Gamma_K^d)$	$\frac{(2+c)L^2(e^{C\beta}-1)}{n\beta}$	1	1	1
ZoSS (this work) $\alpha_t \leq \frac{\log(1+C\beta)}{T\beta\Gamma_K^d}$	$\frac{(2+c)CL^2}{n}$ (proper choice of C in previous bound)	✓	1	1
ZoSS (this work) $\alpha_t \leq C/(t\Gamma_K^d)$	$\frac{(2+c)L^{2}(eT)^{C\beta}}{n}\min\{C+\beta^{-1},C\log(T)\}$	1	1	1