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Motivation — Applications

e The loss function is unknown, but a limited amount of functions
evaluations is available

e Optimization error: Stochastic differences of function evaluations

orovide optimal approximations of the gradient (Duchi et al.)

Black-box adversarial attacks, federated learning, reinforcement

earning, what about generalization?

Assumptions

e The loss function is L-Lipschitz

|f(w, z) = flu, 2)|l2 < Ljjw — ullo,
e The gradient of the loss function is S-Lipschitz

IV f(w, z) = Vuf(u,2)|ls < Bllw — ulls,

Vz € Z.

Vz € Z.

Lemma (Growth Recursion: ZoSS)

Consider the sequences of updates {Gy}L |, {G'}L,, define

AG: 2 E[||Gi(wy) — Gi(w))||]] and T4 = /(3d — 1)/K+1 Let
wy = w), be the starting point, w1 = Gt(wt) and w,,, = Gi(w}) for
anyt € {1,...,T}. Then for any w;, w, € R?

(1 + oztﬁr‘[i() Hwt — w,QH + M@O&t(g + d)3/2, ét() —

lwy — wh|| + 20, LT% + pBoy(3 + d)¥?, G

AG; <

Lemma (Growth Recursion: Mini-Batch ZoSS)

Consider the sequences of updates {G;}_, and {é’ M define
AGy, = E[|Gy(w;) — G (wy)]|] and p < cLFj;l(/(nﬁ(Ser)?’/Q) Let
wy = w)) be the starting point, w;,, = Gy (w;) and w}, | = G, (wy) for
anyt € {1,...,T}. Then for any w;,w, € R and t > 0

NG < {(— - Beur) e il + Lo,

(1+ 2180, T%) ||y — w)]| + (2

Lemma (ZoSS Stability — Nonconvex Loss)

Consider the ZoSS algorithm with final-iterate estimates A(S') and
A(S"), corresponding to the data-sets S, S’, respectively (that differ in
exactly one entry). Then the discrepancy 7 = ||A(S) — A(S")||, under
the event &, , satisfies the inequality

T

‘E[&T‘ggto] < <2L - ,UB(S + d 3/2> Z o7 H (1 =+ ﬁOZJF;Z() :

t=tp+1 J=t+1
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Problem Statement

o Let f(w,2) be the loss at w € R? for some example z € Z.
e Given a dataset S = {z;}, ofiid z; ~D

e Find the parameters w* such that w* € argmin, R(w), where R(w) = E

Since D is not known, we consider the empirical risk

! n
1=1

and the corresponding empirical risk minimization (ERM) problem

e Find W¢ € argmin,, Rg(w)
e ;.. = E[R(A(S)) — Rs(A(S))] (Generalization Error)
® Coxcess = Bs A[R(A(S))] — R(w*) = Eg 4[R(A(S))

egen Eopt

For i.i.d. S, 5" € Z" that differ in one entry, sup, E4|f(A(S), z)
€stab > 0, then €,y < €stap and gy < Lisupg o || A(S) — A(S)][-

Zeroth-Order Stochastic Search (ZoSS)

As a gradient-free alternative of the classical SGD algorithm, we consider the ZoSS scheme, with
(single-example update) update rule

K
[
Wt+1 Wt — thAth 2, U;é ~ N(O, [d), 9! - R+,

where a; > 0 is the learning rate. At every iteration ¢, ZoSS generates K i.i.d. standard normal
random vectors U}, k = 1,..., K, and obtains K + 1 loss evaluations on perturbed model inputs.

Afut =AY &

W,z W, Zj,

Error Decomposition

The stability error of ZoSS at time t breaks down into the stability error of SGD and an
approximation error due to missing gradient information. Let G(-) and G)(-) be SGD iterations

Giw) = w—ayVf(w, z,), Gilw)=w—aVf(w, z{t)

under inputs S, S’ respectively, and let 7; € {1,2,...,n} be a random index chosen uniformly
and independently by the random selection rule of the algorithm, for all ¢ < T'. Similarly we use
the notation G(-) and G’(-) to denote the iteration mappings of ZoSS, i.e.,

Giw) & w — STIAY oy G(w) & w — A Sy s

Then the iterate stability error Gy(w) — G(w') of ZoSS, for any w,w’ € R? and for all at ¢t < T,

may be decomposed as

Gi(w) = Gy(w') oc Gi(w) — Gi(w) + [V fw, z,) = Af . | + [V, 2) = Af o],

€GBstab Eest

where €gpstab denotes the gradient-based stability error (associated with SGD), and €. denotes
the gradient approximation error.

— Rs(A(S))] +(Es a[Rs(A(S)] — R(w”)).

— f(A(S/)7 Z)] < €qtap, TOr SOMe

@E

Growth Recursion — Sketch of the Proof
Define V. = V f(wy, z;,) — Vf(w}, z;,). We apply Taylor's

expansion to find that for any wy, w, € R it is true that
ét(wt) - éé(wlls) = ét(wt) - ét(wé)

— Wt — othf(wt, Zit) — (w;g — atvf<w7/57 th))
—_—
Glan) G (w})=G(w)
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Lemma (Variance Reduction)

let U, c R kc{1,2...,K} beiid standard Gaussian.
Then for all V € R? independent of all U,

1 K
— SV, U)U - V|||V
Kk:1< 9 k> k

Theorem (Nonconvex Bounded Loss)

Consider the ZoSS algorithm with 1’ total number of
iterates, stepsize iy < C'/tI'% (C > 0), and fixed
i< cLT'% /nB(3 + d)*? for some ¢ > 0. Then

(1+(CB)) (T(LQ + c)CLQ)ﬁ(eT)C%i,

‘egen| <

Summary of the Results

Generalization Error Bounds: ZoSS vs SGD

Algorithm Bound

Z0SS (this work) 1+ (CB)~1 1
ap < C/(tl"‘}{) - ((2 + C)CL2) CA+

SGD, a; < Cft 1+ (CB)~!
Hardt et al. [1]

1

Pell+ ;iﬁ)_l) (1+(2+)CL)T

(independent of both d and K)

Z.0SS (this work)
Ot S 4 / t

Z0SS (this work)

log (1—|——(
K
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SGD, oy < C/T L

Hardt et al. [1] -

Z0SS (this work)

c)L?(e“B —
o < CJ(TT4) (24 c)L*( 1)

Z0SS (this work)

< log(1+C3) . ‘ _
=~ Tgr% (proper choice of C' in previous bound)
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